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Abstract

This paper represents an analysis of surface acoustic waves propagating in rotating piezoelectric solids. The
analysis shows that a piezoelectric material may not permit propagation of more than one rotation-perturbed
surface wave even if both the Rayleigh wave and the Bleustein±Gulyaev wave are permissible under a non-rotating

condition. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric crystals have been used to fabricate rotation rate sensors for various applications (see
Gates, 1968; SoÈ derkvist, 1994) for review and general discussion. A typical piezoelectric rotation rate
sensor utilizes the phenomenon that vibrating a rotating body induces a secondary vibration due to the
presence of the Coriolis force and the centrifugal force and the magnitude of the secondary vibration

depends on the rotation rate. There have been many developments on designing rotation rate sensors
utilizing various vibration modes of piezoelectric structures, including ¯exural vibrations of beams
(SoÈ derkvist, 1991; Chou et al., 1991), torsional and radial vibrations of circular cylindrical shells (Yang,
1997), and thickness-shear vibrations of plates (Reese et al., 1989; Yong et al., 1995; Yang, 1996). These
vibrating rotation rate sensors are, however, not suitable for applications that involve high level of

shock or impact, because vibrating parts and their connections are fragile. It is known that surface
acoustic waves in elastic solids (Wren and Burdess, 1987; Clarke and Burdess, 1994) are disturbed by
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rotation and that the speeds of the disturbed waves are dependent of rotation rate. This suggests the
possibility to design rotation rate sensors based on surface acoustic waves. The present paper presents
our analysis of surface acoustic waves propagating in rotating piezoelectric crystals.

In the next section, we present a formulation that governs surface acoustic waves propagating in a
rotating piezoelectric solid, including the e�ects of both the Coriolis force and the centrifugal force. For
simplicity, we consider the case that the piezoelectric body rotates about the axis along which the
surface acoustic waves propagate. Our analysis presented in Section 3 shows that the rotation-perturbed
surface acoustic waves in piezoelectric solids are generally dispersive, even when propagating in a half
space. We then reduce the formulation to an eigenvalue problem for determination of the dependence of
the wave speed upon the rotation rate. The numerical analysis given in Section 4 leads to only one
solution for our model material: PZT-5H, and for two exclusive boundary conditions, i.e., the
electroded boundary and the charge-free boundary. It is known that surface wave solutions for non-
rotating piezoelectric solids may not be unique (Lothe and Barnett, 1976). There are generally two
surface wave solutions, one called the Rayleigh wave because of its resemblance to the Rayleigh wave in
elasticity (Rayleigh, 1885), and the other referred to as the Bleustein±Gulyaev wave owing to the
original work of Bleustein (1968) and Gulyaev (1969). The former is con®ned in a plane, called the
sagittal plane, and the latter has only one non-zero displacement component that is perpendicular to the
sagittal plane. Our solution for PZT-5H has three displacement components and the components within
the sagittal plane are substantially larger than the out-of-plane component. Also, the wave speed of this
solution approaches to the Rayleigh wave speed as the rotation rate diminishes. We, hence, recognize it
as the rotation-perturbed Rayleigh wave. Our numerical results indicate that the wave speed decreases
with increasing rotation rate and this dependence appears to be stronger with the electric charge-free
boundary condition than with the electroded boundary condition. It is evident from our formulation
that the coupling of the in-plane components with the out-of-plane component is due to the presence of
the Coriolis force and the centrifugal force. Our further analysis suggests that a rotation-perturbed
surface acoustic wave should be slower than the bulk waves of the material, i.e., the longitudinal wave
and the shear waves, both the in-plane shear wave and the out-of-plane shear wave. The material
properties given by Tiersten (1969) indicate that the Bleustein±Gulyaev wave is faster than the in-plane
shear wave for PZT-5H, and hence, we do not expect to ®nd the rotation-perturbed Bleustein±Gulyaev
wave for this material. On the other hand, the Rayleigh wave and the Bleustein±Gulyaev wave are both
slower than the bulk waves propagating in PZT-6B, and our numerical scheme indeed leads to two
solutions, i.e., the rotation-perturbed Rayleigh wave and the rotation-perturbed Bleustein±Gulyaev
wave. Finally, we note from our numerical results the quadratic dependence of the reciprocal velocity on
the rotation rate, and we recognize that a linear dependence would have been more desirable for sensing
applications. In studying other cases, we ®nd that this dependence is nearly linear in the case that the
piezoelectric body rotates about an axis that is perpendicular to the propagation direction of surface
waves and that is parallel to the material poling direction. We note, however, that one can only ®nd the
perturbed Rayleigh wave in this setting because the Bleustein±Gulyaev wave is not a�ected by rotation.

2. Surface acoustic waves propagating in a rotating piezoelectric crystal

We consider a linear piezoelectric body that occupies the half space, denoted by x2R0 in the
Cartesian frame shown in Fig. 1, and that rotates at a constant rate O about the x1 axis. In the frame
that rotates with the body, the equations of motion and Coulomb's law have the following
representation:

r � Tÿ 2rOz� Çuÿ rO 2z� �z� u� � r Èu, �2:1�
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r � D � 0, �2:2�
where we denote, by T, u, D and r, the stress tensor, the displacement vector, the dielectric displacement
vector and the mass density, respectively. z stands for the unit vector along the x1 axis. A superimposed
dot indicates di�erentiation with respect to the time parameter t, and the symbol H� represents
divergence with respect to the spatial coordinates x. Note that we have neglected both body forces and
body charges for simplicity.

We now recall the linear constitutive relations for piezoelectric solids as follows:

T � cSÿ eE, �2:3�

D � eTS� EEEE, �2:4�
where c, e and EEE are, respectively, the elasticity tensor, the piezoelectric tensor and the dielectric tensor.
A superimposed T indicates transpose. The strain tensor S and the electric ®eld intensity vector E are
related to the displacement vector u and the electric potential f through the following:

S � ru� �ru�T
2

, E � ÿrf: �2:5�

In the above equation, the symbol H indicates gradient.
We are interested in waves propagating along a surface free of mechanical loads, i.e.

Tn � 0, x2 � 0, �2:6�
where n denotes the unit vector along the x2 axis. There are usually three exclusive cases of electric
boundary conditions associated with a free surface. The ®rst corresponds to an electroded surface, i.e.

f � 0, x2 � 0; �2:7�
the second represents a charge-free surface, i.e.

D � n � 0, x2 � 0, �2:8�
and the third takes into account the e�ect of solid/air interface by requiring continuity of both the
electric potential and the normal component of the dielectric displacement across the interface. For
simplicity, we restrict our analysis to the ®rst two cases. Furthermore, we require that both the

Fig. 1. A surface wave propagating along the x 1 direction in a piezoelectric half-space which is poled along the x 3 direction and

rotates about the x 1 axis.
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displacement and the electric potential diminish with depth because of our interest in surface waves, i.e.

lim
x 24ÿ1

u � 0, lim
x 24ÿ1

f � 0, �2:9�

Considering a surface wave propagating along the x1 direction, we seek solutions of the following form:

u�x, t� � a�x2�ei�kx 1ÿot�, f�x, t� � a4�x2�ei�kx 1ÿot�, �2:10�
where k and o are, respectively, the wave number and the frequency.

We consider piezoelectric crystals of a tetragonal system with point group 4 mm, and we note that
polycrystalline ferroelectric ceramics are of the same symmetry. Placing the x3 axis along the four-fold
axis and using the compressed matrix notation (Tiersten, 1969), we represent the elasticity tensor, the
piezoelectric tensor and the dielectric tensor by the following matrices:0BBBBBB@

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

1CCCCCCA,

0BBBBBB@
0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

1CCCCCCA,

0@ E11 0 0
0 E11 0
0 0 E33

1A, �2:11�

where c66 � �c11 ÿ c12�=2: In this case, the equation of motion (2.1) and Coulomb's law (2.2) take the
following form:

c11u1, 11 � c12u2, 21 � c66�u1, 22 � u2, 12 � � r �u1,

c66�u1, 21 � u2, 11 � � c12u1, 12 � c11u2, 22 � r �u2 ÿ 2rO _u3 ÿ rO2u2,

�c44�u3, 11 � u3, 22 � � r �u3 � 2rO _u2 ÿ rO 2u3,

c,11 � c,22 � 0 �2:12�
where

c � fÿ e15
E11

u3, �c44 � c44 � e215
E11
: �2:13�

Please note that material homogeneity is assumed in this analysis.

3. Perturbed surface acoustic waves

In the present section, we seek solutions of Eq. (2.12) of form given by Eq. (2.10) that satisfy the
mechanical boundary conditions (2.6), the electric boundary condition either (2.7) or (2.8), and the
surface wave conditions (2.9). To seek solutions that decay exponentially with depth, we assume that

u1�x, t� � A1ekZx 2ei�kx 1ÿot�, u2�x, t� � iA2ekZx 2ei�kx 1ÿot�,
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u3�x, t� � A3ekZx 2ei�kx 1ÿot�, c�x, t� � A4e
kx 2ei�kx 1ÿot�, �3:1�

and we require that Z and k are both positive. We now turn to determine the wave number k, the
decaying rate Z (scaled by the wave number, for convenience), and the relations among the displacement
magnitudes A1, A2, A3 and the electric potential magnitude A4: We note that c given by Eq. (3.1)4
satis®es Eq. (2.12)4. Requiring that the displacements given in Eq. (3.1) satisfy the equations of motions
results in a system of linear homogeneous equations for the displacement magnitudes A1, A2, A3 with
the following coe�cient matrix:0B@

ÿ
c66Z2 ÿ c11

�
k2 � ro2 ÿ�c12 � c66 �Zk2 0

�c12 � c66 �Zk2
ÿ
c11Z2 ÿ c66

�
k2 � ro2 � rO2 ÿ2rOo

0 ÿ2rOo �c44
ÿ
Z2 ÿ 1

�
k2 � ro2 � rO2

1CA �3:2�

This represents an eigenvalue problem. For nontrivial solutions, the determinant of the coe�cient
matrix must vanish and this leads to�

c11
ÿ
Z2 ÿ 1

�
=
ÿ
rV 2

�
� 1

��
c66
ÿ
Z2 ÿ 1

�
=
ÿ
rV 2

�
� 1

��
�c44
ÿ
Z2 ÿ 1

�
=
ÿ
rV 2

�
� 1

�
�
�ÿ
c66Z2 ÿ c11

�
=
ÿ
rV 2

�
� 1

�
�c11 ÿ c66 �2Z2=

ÿ
r2V 4

�
��O=o�2

ÿ
�ÿ
c66Z2 ÿ c11

�
=
ÿ
rV 2

�
� 1

��ÿ
c11Z2 � �c44Z2 ÿ c66 ÿ �c44

�
=
ÿ
rV 2

�
ÿ 2

�
�O=o� 2

ÿ
�ÿ
c66Z2 ÿ c11

�
=
ÿ
rV 2

�
� 1

�
�O=o�4: �3:3�

To obtain the above, we have used the relation: k � o=V, where V denotes the surface acoustic wave
speed. This relation indicates that the wave speed V generally depends upon the frequency o, i.e., the
perturbed surface acoustic wave is dispersive.1 For convenience of later discussion, we rewrite Eq. (3.3)
as �ÿ

Z2 ÿ 1
�
�V1=V�2�1

��ÿ
Z2 ÿ 1

�
�V2=V�2�1

��ÿ
Z2 ÿ 1

�
�V3=V�2�1

�
� Z2

�
Z2�V2=V�2ÿ�V1=V�2�1

��
�V1=V�2ÿ�V2=V�2

�2�O=o�2
ÿ
�
Z2�V2=V�2ÿ�V1=V�2�1

��
Z2�V1=V�2ÿ�V2=V�2�

ÿ
Z2 ÿ 1

�
�V3=V�2ÿ2

�
�O=o�2

ÿ
�
Z2�V2=V�2ÿ�V1=V�2�1

�
�O=o�4 �3:4�

where

V1 �
�������
c11
r

r
, V2 �

�������
c66
r

r
, V3 �

�������
�c44
r

s
: �3:5�

1 We acknowledge one of the reviewers for noting the mistake we made in a previous version by neglecting the e�ect of the cen-

trifugal force.
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We note that V1 is the longitudinal wave speed propagating along the x1 direction and that V2 and V3

are the speeds of shear waves propagating along the x1 direction with particles moving, respectively,
along the x2 direction and the x3 direction.

We need to determine the eigenvalues Z by solving Eq. (3.4) with the unknown wave speed V and to
obtain the corresponding eigenvectors A from Eq. (3.2). To satisfy three mechanical boundary
conditions given by (2.6) and one electric boundary condition given by either (2.7) or (2.8), one
generally needs three independent eigenvectors. This requires that the dispersion relation (3.4) have three
roots for Z2 which must be positive in order to satisfy the surface wave conditions (2.9). We have not
found general conditions under which Eq. (3.4) has three positive roots. At this point, we assume that it
has three distinct positive roots and we verify this assumption in our numerical analysis for speci®c
model materials. We denote, by Zm and A�m�, the corresponding positive eigenvalues and eigenvectors,
and we thus obtain the following representation for the displacement and the electric potential:

u1 �
X3
m�1

Cm
�A
�m�
1 ekZmx 2ei�kx 1ÿot�,

u2 �
X3
m�1

iCm
�A
�m�
2 ekZmx 2ei�kx 1ÿot�,

u3 �
X3
m�1

Cm
�A
�m�
3 ekZmx 2ei�kx 1ÿot�,

c � C4e
kx 2ei�kx 1ÿot�, �3:6�

where ÅA
�m�

, m � 1, 2, 3, are the scaled eigenvectors de®ned as:

�A
�m�
1 � A

�m�
1 =A�m�2 � Zm

�
�V1=V�2ÿ�V2=V�2

�
=
�
Z2
m�V2=V�2ÿ�V1=V�2�1

�
,

�A
�m�
2 � A

�m�
2 =A�m�2 � 1,

�A
�m�
3 � A

�m�
3 =A�m�2 � 2�O=o�=

hÿ
Z2
m ÿ 1

�
�V3=V�2�1� �O=o� 2

i
: �3:7�

For convenience, we set in Eq. (3.6) Cm � A
�m�
2 and C4 � A4: The displacement and the electric potential

presented in Eq. (3.6) contain four unknown magnitudes Cj, j � 1, 2, 3, 4, and the unknown wave speed
V. Requiring that Eq. (3.6) satisfy the mechanical boundary conditions (2.6) and the electric boundary
condition either (2.7) or (2.8) leads to determination of the wave speed and the relations among the
magnitudes.

In the case that the traction-free surface is electroded, substitution of Eq. (3.6) into Eqs. (2.6) and
(2.7) leads to a system of four linear homogeneous equations for the unknown magnitudes Cj, j � 1, 2,
3, 4: For nontrivial solutions, we require that the determinant of the coe�cient matrix vanish, i.e.
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det

0BBBBBBB@

�A
�1�
1 Z1 ÿ �A

�1�
2

�A
�2�
1 Z2 ÿ �A

�2�
2

�A
�3�
1 Z3 ÿ �A

�3�
2 0

c12 �A
�1�
1 � c11 �A

�1�
2 Z1 c12 �A

�2�
1 � c11 �A

�2�
2 Z2 c12 �A

�3�
1 � c11 �A

�3�
2 Z3 0

�c44 �A
1

3Z1 �c44 �A
2

3 Z2 �c44 �A
3

3Z3 e15

e15 �A
�1�
3 e15 �A

�1�
3 e15 �A

�1�
3 E11

1CCCCCCCA � 0: �3:8�

In the next section, we solve Eq. (3.8) numerically to determine the wave speed V.
In the case that the traction-free surface is also charge-free, the electric boundary condition (2.8)

requires that the potential c vanish identically and this, together with Eq. (2.13)1, implies that the
electric potential f is proportional to the displacement u3: Substitution of the three displacements given
by Eq. (3.6) into the mechanical boundary conditions Eq. (2.6) yields a system of three linear
homogeneous equations for the displacement magnitudes Am, m � 1, 2, 3: Requiring that the system
have nontrivial solutions leads to the following equation to determine the wave speed:

det

0BBBB@
�A
�1�
1 Z1 ÿ �A

�1�
2

�A
�2�
1 Z2 ÿ �A

�2�
2

�A
�3�
1 Z3 ÿ �A

�3�
2

c12 �A
�1�
1 � c11 �A

�1�
2 Z1 c12 �A

�2�
1 � c11 �A

�2�
2 Z2 c12 �A

�3�
1 � c11 �A

�3�
2 Z3

�c44 �A
1

3Z1 �c44 �A
2

3 Z2 �c44 �A
3

3Z3

1CCCCA � 0: �3:9�

4. Determination of the wave speed

We are primarily interested in the e�ect of rotation on the surface acoustic wave speed. To solve Eqs.
(3.8) and (3.9) numerically, we use PZT-5H as a model material whose material parameters are given in
the book of Tiersten (1969) and are listed in Table 1. To plot the dependence of the surface acoustic
wave speed V upon the rotation rate O, we ®nd it is convenient to introduce the following dimensionless
parameters:

X �
�
O
o

�2

, Y � V1

V
: �4:1�

We have plotted Y vs. X in Figs. 2 and 3, respectively, for the electroded surface and the charge-free
surface. The results show that the wave speed decreases with increasing rotation rate. A comparison of
Figs. 2 and 3 suggests that the rotation e�ect on the wave speed is stronger when the traction-free
surface is electroded instead of charge-free.

Table 1

Material properties

Material r c11 c44 c66 e15 e11 �c44

PZT-5H 7500 12.6 2.30 2.325 17.0 1.505 4.220

PZT-5A 7750 12.1 2.11 2.257 12.3 0.811 3.975

PZT-6B 7550 16.8 3.55 4.167 4.6 0.360 4.134

BaTiO3 5700 15.0 4.39 4.237 11.4 0.987 5.707
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Note that the elastic moduli, the piezoelectric coe�cient, the dielectric constant and the mass density
in Table 1 are given in 1010 N/m2, C/m2, 10ÿ8 C/V m and kg/m3, respectively.

It is known that surface wave solutions for non-rotating piezoelectric solids may not be unique. There
may be two surface wave solutions, i.e., the Rayleigh wave and the Bleustein±Gulyaev wave. Our
numerical analysis, however, delivers only one solution for PZT-5H and the wave speed of this solution
approaches the Rayleigh wave speed as the rotation rate diminishes. For further understanding of this
issue, we reduce our formulation to the non-rotating case: O � 0: Without rotation, Eqs. (3.2) and (3.3),
or (3.4) equivalently, reduce to0B@

ÿ
c66Z2 ÿ c11

�
� rV 2 ÿ�c12 � c66 �Z 0

�c12 � c66 �Z
ÿ
c11Z2 ÿ c66

�
� rV 2 0

0 0 �c44
ÿ
Z2 ÿ 1

�
� rV 2

1CA
0@A1

A2

A3

1A �
0@ 0
0
0

1A, �4:2�

Fig. 2. Variations of the speed of the rotation-perturbed Rayleigh wave for PZT-5H; the traction-free surface is electroded: (a) with

the eigenvalues determined from Eq. (3.3); (b) with the approximated eigenvalues given by Eq. (4.5).

Fig. 3. Variations of the speed of the rotation-perturbed Rayleigh wave for PZT-5H; the traction-free surface is free of electric

charges: (a) with the eigenvalues determined from Eq. (3.3); (b) with the approximated eigenvalues given by Eq. (4.5).
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and �ÿ
Z2 ÿ 1

�
�V1=V�2�1

��ÿ
Z2 ÿ 1

�
�V2=V�2�1

��ÿ
Z2 ÿ 1

�
�V3=V�2�1

�
� � 0: �4:3�

From Eq. (4.3), one can readily determine the eigenvalues:

�Z1 �
��������������������������
1ÿ �V=V1 �2

q
, �Z2 �

��������������������������
1ÿ �V=V2� 2

q
, �Z3 �

��������������������������
1ÿ �V=V3� 2

q
: �4:4�

Note from Eq. (4.2) that A1 and A2 are decoupled from A3: Taking the eigenvalues �Z1, �Z2, and setting
A3 � 0, one may obtain a surface wave with particles moving in the sagittal plane �x3 � 0), i.e., the
Rayleigh wave. For the eigenvalues �Z1 and �Z2 to be real, the Rayleigh wave speed VR must be smaller
than both the longitudinal wave speed V1 and the shear wave speed V2: Using the third eigenvalue �Z3
and taking A1 � A2 � 0 may lead to a surface wave with particles moving perpendicular to the sagittal
plane, that is, the Bleustein±Gulyaev wave. We denote by VB the Bleustein±Gulyaev wave speed, and we
note that VB is always lower than the shear wave speed V3:

In view of Eq. (3.4), we expect that the eigenvalues Z2
m, m � 1, 2, 3 di�er slightly from their non-

rotation values �Z2
m when the ratio O=o is small, and hence, we approximate the eigenvalues Z2

m by Ẑ2
m�

�Z2
m � Dm�O=o�2, m � 1, 2, 3: Thus, the sign of the eigenvalue Ẑ2

m is determined by that of �Z2
m when

�O=o�2 is su�ciently small except that �Z2
m vanishes. We note that the exception case corresponds to

leaky waves, instead of surface waves. As discussed previously, there may exist a surface wave only if
the three eigenvalues Z2

m are all positive. Together with Eq. (4.4), this indicates that the surface acoustic
wave speed of a rotating piezoelectric body should generally be smaller than the longitudinal wave speed
V1 and the shear wave speeds both V2 and V3: Hence, we do not expect to ®nd a surface wave that
corresponds to the Bleustein±Gulyaev wave if the Bleustein±Gulyaev wave speed is larger than any of
the bulk wave speeds V1, V2 and V3: For PZT-5H, we have the relations: VR < V2 < VB < V3 < V1, as
shown in Table 2, and therefore, we should not expect to ®nd the disturbed Bleustein±Gulyaev wave by
rotation. In Table 2, we also list the wave speeds for PZT-5A, PZT-6B and barium titanate, according
to Ja�e and Berlincourt (1965). As one can see from Table 1, PZT-6B is the only material among those
listed in Table 2 whose Bleustein±Gulyaev wave speed is smaller than all the bulk wave speeds V1,V2

and V3, and hence, we may ®nd the rotation-disturbed Bleustein±Gulyaev wave for PZT-6B. It is known
that existence of surface waves depends upon boundary conditions. According to the work of Lothe and
Barnett (1976) on surface waves propagating in non-rotating piezoelectric materials, there exists at most
one subsonic wave propagating along a surface free of both mechanical loads and electric charges,
corresponding to the boundary conditions (2.6) and (2.8). Reducing our formulation to the non-rotating
case, one can show that the Bleustein±Gulyaev wave is not permissible by the boundary conditions (2.6)
and (2.8). We, therefore, consider the boundary conditions (2.6) and (2.7), corresponding to an
electroded surface that is free of mechanical loads, and seek solutions within the range of rotation rate:
0 < X < 0:01: Please note our assumption that

����
X
p � O=o� 1: We ®nd two solutions, one within the

Table 2

Comparison of wave speeds

Material V1 V2 V3 VR VB Sorting

PZT-5H 4099 1761 2372 1656 2112 VR < V2 < VB < V3 < V1

PZT-5A 3951 1707 2265 1645 2000 VR < V2 < VB < V3 < V1

PZT-6B 4717 2349 2340 2302 2316 VR < VB < V3 < V2 < V1

BaTiO3 5130 2726 3164 2681 3079 VR < V2 < VB < V3 < V1
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entire range of rotation rate, corresponding to the perturbed Rayleigh wave, and the other only for
X < 6� 10ÿ5, representing the perturbed Bleustein±Gulyaev wave. The numerical results are plotted in
Figs. 4 and 5, respectively. To see why our numerical program can not ®nd the second solution for
X > 6� 10ÿ5, we show in Fig. 5 the region (the shaded area) in which Eq. (3.4) has three positive roots
for PZT-6B. We see that the solution ends at the boundary of this region where X16� 10ÿ5: While, for
PZT-5A and barium titanate, we ®nd only one solution corresponding to the Rayleigh wave, and the
variations of the wave speed with the rotation rate for these materials are plotted in Fig. 6. As discussed
above, we do not expect to ®nd a surface wave that corresponds to the Bleustein±Gulyaev wave for
these materials.

Furthermore, miniaturization of such sensors requires that the surface waves in operation be of a
wave length no more than a few microns, and correspondingly, the operation frequency o should
signi®cantly higher than the rotation rate O of mechanical machinery, typically a few thousand
revolutions per minute. Therefore, the ratio O=o should be a small parameter, and this suggests that
one may tackle the problem using a perturbation analysis. By approximating the eigenvalues Z2

m by Ẑ2
m�

�Z2
m�Dm�O=o�2, m � 1, 2, 3, we obtain from Eq. (3.4)

Ẑ2
1 � �Z2

1 � �V=V1� 2�V=V2� 2�V=V3 �2 F�V, �Z1�ÿ
�Z2
1 ÿ �Z2

2

�ÿ
�Z2
1 ÿ �Z2

3

� �O=o�2

Ẑ2
2 � �Z2

2 � �V=V1� 2�V=V2� 2�V=V3 �2 F�V, �Z2�ÿ
�Z2
2 ÿ �Z2

3

�ÿ
�Z2
2 ÿ �Z2

1

� �O=o�2

Ẑ2
3 � �Z2

3 � �V=V1� 2�V=V2� 2�V=V3 �2
F
ÿ
V, �Z3

�ÿ
�Z2
3 ÿ �Z2

1

�ÿ
�Z2
3 ÿ �Z2

2

� �O=o�2 �4:5�

where

F�V, Z� � ÿ
�
Z2�V2=V�2ÿ�V1=V�2�1

��
Z2�V1=V�2ÿ�V2=V�2�

ÿ
Z2 ÿ 1

�
�V3=V�2ÿ2

�
ÿ
�

��V1=V�2ÿ�V2=V�2
�2
Z2: �4:6�

Fig. 4. Variations of the speed of the rotation-perturbed Rayleigh wave for PZT-6B; the traction-free surface is electroded.
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We need to substitute these approximated eigenvalues in Eq. (3.7) to approximate the corresponding
eigenvectors. We then have to approximate Eqs. (3.8) and (3.9), respectively, for the electroded and
charge-free surfaces, using the approximated eigenvalues and approximated eigenvectors, and ®nally we
should solve the resulting equations for an approximated expression of the surface wave speed. We have
to give up this attempt because it is too algebraically involved. We note, however, that it is very time-
consuming to search for three positive roots of Eq. (3.4) with the unknown wave speed to be determined
by solving either Eq. (3.8) or (3.9), because it usually requires the use of an iterative procedure. As an
alternative numerical procedure, we substitute the approximated eigenvalues given in Eq. (4.5) into Eqs.
(3.8) and (3.9) to determine the variations of the surface wave speed with rotation rate, respectively, for
the electroded surface and the charge-free surface. The results for PZT-5H are plotted, respectively, in
Figs. 2 and 3 for comparison with the results obtained from the full solution. The comparison indicates
that the approximation is fairly good for �O=o�2R0:005, and that the error becomes increasingly large
as the frequency ratio increases.

Fig. 5. Variations of the speed of the rotation-perturbed Bleustein±Gulyaev wave for PZT-6B; the traction-free surface is elec-

troded. The shaded area indicates the region in which there are three positive eigenvalues for PZT-6B.

Fig. 6. Variations of the speed of the rotation-perturbed Rayleigh wave for barium titanate (Type 1), PZT-5A (Type 2) and PZT-

5H (Type 3); the traction-free surface is electroded.
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5. Discussion

The perturbation analysis is helpful for us to understand the suppression of the Bleustein±Gulyaeve
wave in PZT-5H by rotation, although it did not lead us to an approximated relation of the surface
wave speed with the rotation rate. The perturbed Bleustein±Gulyaeve wave requires that all the three
eigenvalues, instead of Z3 alone as in the non-rotating case, be positive because rotation results in
coupling of the out-of-plane displacement with the in-plane displacements. The approximated
expressions for the eigenvalues given in Eq. (4.5) together with Eq. (4.4) show that all the three
eigenvalues are positive only if the Bleustein±Gulyaeve wave speed VB is lower than all the bulk wave
speeds V1, V2, and V3: This requires that VB < V2 because it is guaranteed that VB < V3 and V2 < V1

for all the materials.
We note from the numerical results the quadratic dependence of the reciprocal velocity on the

rotation rate, and this suggests that sensors based upon these phenomena will not be very sensitive to
low rotation rate, as pointed out to us by one of the reviewers. This has motivated us to examine other
cases. We ®nd rotation about the x3 axis, instead of the x1 axis, is of some particular interest and we
summarize below some of the results. In this case, the equations of motion and the Coulomb's law are
given as follows:

c11u1, 11 � c12u2, 21 � c66�u1, 22 � u2, 12 � � r �u1 ÿ 2rO _u2 ÿ rO2u1,

c66�u1, 21 � u2, 11 � � c12u1, 12 � c11u2, 22 � r �u2 � 2rO _u1 ÿ rO2u2,

c44�u3, 11 � u3, 22 � � e15
ÿ
f,11 � f,22

� � r �u3,

e15�u3, 11 � u3, 22 � ÿ E11
ÿ
f,11 � f,22

� � 0, �5:1�

The traction-free condition is given as

x2 � 0:
c12u1, 1 � c11u2, 2 � 0,
c66�u1, 2 � u2, 1� � 0,
c44u3, 2 � e15f,2 � 0

�5:2�

The electroded and charge-free boundary conditions have the following respective representations:

x2 � 0: f � 0, �5:3�

x2 � 0: e15u3, 2 ÿ E11f,2 � 0, �5:4�

It is evident from Eqs. (5.1)±(5.4) that rotation does not a�ect the out-of-plane displacement u3 and the
electrical potential f, and that the third and fourth equations of (5.1) are identical to the equations that,
together with the boundary conditions (5.2)3 and (5.4), lead to the Bleustein±Gulyaev wave in the non-
rotation case. We, therefore, do not expect the Bleustein±Gulyaev wave to be perturbed by the rotation
in the present case. To study the perturbed Rayleigh wave, we are interested in solutions of the ®rst two
equations of Eq. (5.1) with the boundary conditions given by the ®rst two equations of Eq. (5.2) that
govern the in-plane displacements u1 and u2: We note that the ®rst two equations of Eq. (5.1) are
decoupled from the third and fourth, and correspondingly, the boundary conditions given in Eqs. (5.2)
and (5.4) are decoupled as well. To seek the perturbed Rayleigh wave solution, we set
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u1 � A1e
kZx 2ei�kx 1ÿot�, u2 � iA2ekZx 2ei�kx 1ÿot� �5:5�

Substitution from Eq. (5.5) into the ®rst two equations of Eq. (5.1) yields0@V 2
1 ÿ V 2

2 Z
2 ÿ V 2

�
1� �O=o�2

� ÿ
V 2

1 ÿ V 2
2

�
Zÿ 2V 2O=oÿ

V 2
1 ÿ V 2

2

�
Z� 2V 2O=o V 2

1Z
2 ÿ V 2

2 � V 2
�
1� �O=o�2

�
1A�A1

A2

�
�
�
0
0

�
�5:6�

For nontrivial solutions, we require that the determinant of the coe�cient matrix in Eq. (5.6) vanish,
and this leads to the following characteristic equation:�

V 2
1 Z

2 ÿ ÿV 2
1 ÿ V 2

���
V 2

2 Z
2 ÿ ÿV 2

2 ÿ V 2
��

� V 2
ÿ
2V 2 � V 2

1 � V 2
2 ÿ V 2

1 Z
2 ÿ V 2

2 Z
2
�
�O=o�2ÿV 4�O=o�4 �5:7�

In the non-rotating case, Eq. (5.7) leads to two distinct positive eigenvalues:

�Z1 �
��������������������������
1ÿ �V=V1 �2

q
, �Z2 �

��������������������������
1ÿ �V=V2� 2

q
: �5:8�

In the case that O=o� 1, we assume that it has two distinct positive eigenvalues Z1 and Z2, and thus
obtain the following representation for the in-plane displacements:

u1 �
X2
m�1

Cm
�A
�m�
1 ekZmx 2ei�kx 1ÿot�,

u2 �
X2
m�1

iCm
�A
�m�
2 ekZmx 2ei�kx 1ÿot�, �5:9�

where the eigenvectors ÅA
�1�

and ÅA�2� are de®ned as

�A
�m�
1 �

ÿ
V 2

1 ÿ V 2
2

�
Zm ÿ 2V 2O=o, �A

�m�
2 � ÿV 2

1 � V 2
2 Z

2
m � V 2

�
1� �O=o� 2

�
: �5:10�

Substituting Eq. (5.9) into the in-plane traction-free boundary conditions, i.e., the ®rst two of Eq. (5.2),
yields0@�1ÿ 2�V2=V1�2

�
�A
�1�
1 � Z1 �A

�1�
2

�
1ÿ 2�V2=V1 �2

�
�A
�2�
1 � Z2 �A

�2�
2

Z1 �A1�1� ÿ �A
�1�
2 Z2 �A

�2�
1 ÿ �A

�2�
2

1A�C1

C2

�
�
�
0
0

�
�5:11�

Requiring that the determinant of the coe�cient matrix vanish leads to the following characteristic
equation:n�

1ÿ 2�V2=V1 �2
�

�A
�1�
1 � Z1 �A

�1�
2

o�
Z2 �A

�2�
1 ÿ �A

�2�
2

�
�
n�
1ÿ 2�V2=V1�2

�
�A
�2�
1 � Z2 �A

�2�
2

o�
Z1 �A

�1�
1 ÿ �A

�1�
2

�
�5:12�

Substituting Eq. (5.10) into Eq. (5.12) yields
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ÿ
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We note that Eq. (5.13) shows the dependence of the Rayleigh wave speed V upon the rotation rate O
with Z1 and Z2 being the eigenvalues to be determined from Eq. (5.7). The dependence of the Rayleigh
wave speed V upon the rotation rate O appears to be nearly linear as shown in Fig. 7 for small ratio
O=o, and we note that this type of dependence is particularly desirable for sensor applications. Noting
Eqs. (5.7) and (5.8), we approximate the eigenvalues as follows:

Z1 � �Z1 �O

�
O2

o2

�
, Z2 � �Z2 �O

�
O 2

o 2

�
: �5:14�

This together with Eq. (5.13) leads toÿ
1ÿ V 2

2 =V
2
1

�ÿ
1ÿ 2V 2

2 =V
2
1

��ÿÿ 1� V 2=V 2
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ÿ
1ÿ 2V 2

2 =V
2
1

��

Fig. 7. Variations of the speed of the rotation-perturbed Rayleigh wave for PZT-5H and for rotation about an axis that is perpen-

dicular to the propagation direction of the surface wave and that is parallel to the material poling direction.
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The above con®rms that the dependence of the Rayleigh wave speed upon the rotation rate is
approximately linear for very small ratio O=o:
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